Mäuseherzen als Schlüssel für bessere Heilungschancen in der Humanmedizin

Mit Hilfe von Genexpressionsanalysen konnten Dr. Anne-Marie Galow und Dr. Ronald Brunner sowie ihre Wissenschaftskollegen erstmals die Zellstrukturen von Mäuseherzen vollständig erfassen. Als Modell diente die Dummerstorfer Mauslinie (Foto: FBN/nordlicht).

Forscherteam aus MV kann erstmals Zellstrukturen des Herzens vollständig darstellen

Einem interdisziplinären Forscherteam, bestehend aus Wissenschaftlern des Leibniz-Institutes für Nutztierbiologie (FBN) in Dummerstorf und der Universität Rostock, ist es gelungen, die Zellpopulationen und insbesondere die Subpopulationen im Herzen erwachsener Mäuse vollständig zu entschlüsseln und auch die Dynamiken der einzelnen Zellgruppen aufzuzeigen.

„Dabei wurde auch eine Gruppe von Gefäßwandzellen entdeckt, die Eigenschaften von Herzmuskelzellen aufweisen. Da Herzmuskelzellen sich im Allgemeinen nicht mehr teilen können, weshalb es nach einem Infarkt zu bleibenden Schäden kommt, wäre die Entdeckung einer Quelle zur Bildung neuer Herzmuskelzellen vor allem für die regernative Herzmedizin von besonderer Bedeutung“, betonte Dr. Anne-Marie Galow vom Institut für Genombiologie am FBN. Um die zelluläre Zusammensetzung eines kompletten Organs zu erfassen, wurden erstmalig tausende Zellkerne aus dem Herzen ausgewachsener Mäuse sequenziert, bioinformatisch analysiert und so bestimmten Zellpopulationen zugeordnet.

Der Forschungserfolg wurde im Rahmen des Verbundforschungsvorhabens „Programmierte Herzschrittmacherzellen zur in vitro Medikamententestung (iRhythmics)“ erzielt und Anfang des Jahres in „Cells“, einer internationalen Open-Access-Zeitschrift für Zellbiologie, Molekularbiologie und Biophysik veröffentlicht*. Erstautoren sind Dr. Anne-Marie Galow (FBN) sowie Paula Müller (Klinik für Herzmedizin, Universitätsmedizin Rostock) und Markus Wolfien (Lehrstuhl für Systembiologie und Informatik, Universität Rostock).

Das Projekt, das von der EU und der Landesregierung MV mit rund zwei Millionen Euro gefördert wird, läuft seit Oktober 2018. Beteiligt ist unter Federführung der Universitätsmedizin und Universität Rostock (Prof. Dr. Robert David) neben dem Institut für Genombiologie am FBN in Dummerstorf die Universitätsmedizin Greifswald. Ziel des Projektes der Landesexzellenzforschung ist es, aus unreifen Herzmuskel-Vorläuferzellen schlagende Herzmuskelzellen, sogenannte „programmierte Herzschrittmacherzellen“ herzustellen. Diese bieten die Möglichkeit, neuartige Medikamententests für Herz- und Kreislauferkrankungen in der Petrischale und ohne Tierversuche durchzuführen. Das FBN ist in dem Gemeinschaftsprojekt für die umfassenden Genexpressionsanalysen der programmierten Schrittmacherzellen und die Auswertung der Daten zuständig.

Neue Erkenntnisse über die Dynamik und Vernetzung von Herzzellen
Die zelluläre Zusammensetzung einiger anderer Organe konnte bereits zuvor erfasst werden. „Das Herz stellte jedoch eine besondere Herausforderung dar, weil die Herzmuskelzellen aufgrund ihrer Größe, Länge und Form nicht mit den Standard-Systemen bearbeitet werden konnten“, erläuterte Dr. Anne-Marie Galow. „Aus diesem Grund haben wir einen alternativen Ansatz gewählt, der zuvor nur in der Neurologie beschrieben wurde. Nervenzellen können ebenfalls sehr groß werden und sind dazu noch verzweigt. Mit der noch sehr neuen Methodik der Einzelkernsequenzierung haben wir ganze erwachsene Säugetierherzen untersucht und 24 verschiedene Zellcluster identifiziert. Analysen auf zellulärer Ebene sind unabdingbar, um unser Verständnis komplexer Gewebe wie des Säugetierherzens zu erweitern“, so die Humanbiologin.

Die Aufklärung der zellulären Zusammensetzung der einzelnen Organe und das Anlegen von Zellmarkerprofilen der einzelnen Zelltypen ist aufwändige Pionierarbeit in der Grundlagenforschung. Die gewonnenen Daten liefern der Wissenschaft jedoch wertvolle neue Erkenntnisse über die Dynamik und Vernetzung von Herzzellen und helfen, bestimmte molekularbiologische Prozesse besser zu verstehen.

Insbesondere die Ergebnisse zu den erstmals spezifizierten Gefäßwandzellen sind vielversprechend für eine künftige Anwendung in der regenerativen Herzmedizin, zur Wiederherstellung von durch Krankheit oder Unfall geschädigten kardiologischen Zellen, Geweben und Organen. „Auf lange Sicht kann die Sequenzierung auf Einzelzellebene genutzt werden, um krankhafte Veränderungen in Organen bestimmten Zellpopulationen zuzuordnen und so in Zukunft gezieltere Therapieansätze zu ermöglichen“, so die Wissenschaftlerin.

In einem weiteren Schritt sind nun entsprechende Analysen mit Schweineherzen geplant. Diese ähneln dem menschlichen Herzen weitaus stärker. Zudem haben sie als potenzielle Quelle für Xenotransplantate in den letzten Jahrzehnten in der Herz-Kreislauf-Forschung zunehmend an Bedeutung gewonnen.

*Originalpublikation
Single-Nucleus Sequencing of an Entire Mammalian Heart: Cell Type Composition and Velocity
Cells 2020, 9(2), 318; https://doi.org/10.3390/cells9020318, Published: 28 January 2020
www.mdpi.com/2073-4409/9/2/318

Quelle: Leibniz-Institut für Nutztierbiologie (FBN) Bummersdorf

Hinterlassen Sie gern einen Kommentar.

  Subscribe  
Benachrichtige mich zu: